
CS 237: Probability in Computing

Wayne Snyder
Computer Science Department

Boston University

Lecture 17:
• Central Limit Theorem

• Sampling Theory (Application of the CLT)

• Point Estimates: warmup -- when the population parameters are known



The Central Limit Theorem

We will do the first part of the lecture from the 
notebook posted on the class web page. 



Review: CLT and the Normal Distribution



Review: CLT and the Normal Distribution

The 68 – 95 – 99 Rule

Actually, we can be more precise...



Review: CLT and the Normal Distribution

Example:   Let X ~ N(66,32). We calculated the mean for n = 100, so we 
should get a standard deviation smaller by a factor of 10: 

65.7 66.0 66.3 66.665.1 66.665.4



Review: CLT and the Normal Distribution

Graphically, you can see this in the experiment with flipping coins:



Sampling Theory
Recall: Sampling is the process of randomly selecting outcomes from a population, 
which is really just a random variable; the terminology for samples is slightly different 
for characteristics of the sample and population:

Population X

Population Parameters

mean           
variance
standard deviation

Sample of size n:Randomly 
sample n 
outcomes

Sample Statistics

mean           
variance
standard deviation

Sampling is generally 
done with 
replacement, but if the 
population is very 
large (perhaps infinite) 
it does not matter!

A ”trial” is one 
such selection of 
n samples.



Sampling Theory

The sample statistics are estimators of
the population parameters. They are
also random variables (a function
of the original random variable X).
We will focus  on the sample mean:

In particular, we will use the CLT
and focus on the sampling distribution 
of the sample mean, e.g., 



Sampling Theory

Analogy: You want to know the 
height of BU students.  Every day 
you select 100 students and measure 
them and take the mean. This is 
one trial (one “poke” of the sample 
mean random variable      ) and 
produces one number (a sample 
statistic).  This sampling distribution 
of the sample mean is what results 
when you do 10,000 trials on 10,000 
days, or 10,000 “pokes” of the 
sample mean random variable.   

It’s random variables, functions
of random variables,  and distributions 
all over again!  



Sampling Theory When Population Parameters are Known

This is a warm-up to the real situation.....

Suppose (humor me!) that you have
the actual height data about all BU students, 
including the mean and standard deviation, 
but then you LOSE all the data, but somehow
you remember that the standard deviation is

𝜎 = 3 inches.

Furthermore, you need to the know the mean height, but you don’t have a lot of time, and 
in any case you only need an approximation (an estimate) of the true mean 𝜇.

What to do?  Sample 100 randomly-selected students (one trial) and use the sample mean 
as your estimate!         (Think polling: you ask 100 random people who they voted for.)

When you report your result, you have an estimate, and you can use the CLT to give precise 
information about how accurate your estimate is. This is called a Confidence Interval... 



Confidence Intervals When Population Parameters are Known

So you know that the actual standard deviation is  𝜎 = 3 inches and you want to estimate 
the unknown actual mean height 𝜇 by using one trial, one “poke” of the sample mean 
estimator     , and you know by the CLT what the sampling distribution looks like. 
You just don’t know where the centerpoint 𝜇 is: 

𝜇𝜇 – 0.3 𝜇 + 0.6 𝜇 + 0.9𝜇 – 0.6𝜇 – 0.9 𝜇 + 0.3
68.27%

95.45%

99.73%



Confidence Intervals When Population Parameters are Known

But what you DO know is that whatever number you get for       from one trial of 
measuring 100 students, you have 68.27% chance of being within 0.3 inches of the true 
mean, 95.45% chance of being within 0.6 inches, and 99.73% of being within 0.9 inches: 

𝜇𝜇 – 0.3 𝜇 + 0.6 𝜇 + 0.9𝜇 – 0.6𝜇 – 0.9 𝜇 + 0.3
68.27%

95.45%

99.73%
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Confidence Intervals When Population Parameters are Known
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Confidence Intervals When Population Parameters are Known

But notice that what we are really talking about is the probability of the distance
being within bounds guaranteed by the CLT: 

𝜇𝜇 – 0.3 𝜇 + 0.6 𝜇 + 0.9𝜇 – 0.6𝜇 – 0.9 𝜇 + 0.3
68.27%

95.45%

99.73%

𝜇



Confidence Intervals When Population Parameters are Known
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Confidence Intervals When Population Parameters are Known

𝜇𝜇 – 0.3 𝜇 + 0.6 𝜇 + 0.9𝜇 – 0.6𝜇 – 0.9 𝜇 + 0.3
68.27%

95.45%

99.73%

𝜇

But then because the normal is symmetric, it does not matter if we change our perspective 
to use a sampling distribution centered on 𝜇 or on     :



Confidence Intervals When Population Parameters are Known
But then because the normal is symmetric, it does not matter if we change our perspective 
to use a sampling distribution centered on 𝜇 or on     :

𝜇𝜇 – 0.3 𝜇 + 0.6 𝜇 + 0.9𝜇 – 0.6𝜇 – 0.9 𝜇 + 0.3
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Confidence Intervals When Population Parameters are Known

68.27%

95.45%

99.73%

𝜇

So we can pretend that the population mean is normally distributed around the sample 
mean (not true in general, but for one sample, it is effectively the same thing).  



Confidence Intervals When Population Parameters are Known

68.27%

95.45%

99.73%

𝜇

So we can pretend that the population mean is normally distributed around the sample 
mean (not true in general, but for one sample, it is effectively the same thing).  



Confidence Intervals When Population Parameters are Known

68.27%

95.45%

99.73%

𝜇

So we can pretend that the population mean is normally distributed around the sample 
mean (not true in general, but for one sample, it is effectively the same thing).  



Confidence Intervals When the Population Std Dev is Known

Confidence Intervals Using the Population Standard Deviation: 

Let       be  the standard deviation of the population…..

Then:

1. Choose a sample size n;

2. Calculate the standard deviation of the sample mean:  

3. Choose a confidence level CL (e.g., 95.45%);

4. Calculate the multiplier k for s corresponding to                                                         ; 

5. Perform random sampling of n samples and calculate       

6. Report your results using the confidence interval corresponding to CL:

“The mean of the population is                       with a confidence of CL.”       



Confidence Intervals When Population Parameters are Known

Example -- Height of BU Students:

Suppose we know that the height of BU students has standard deviation 𝜎 = 3 inches.

1. Choose a sample size n = 100;

2. 𝜎𝑥 = 0.3 inches

3. Choose a confidence level CL = 95.45%;

4. Calculate the multiplier k = 2; 

5. Perform random sampling of 100 students and calculate       = 66.134 inches ; 

6. Report your results using the confidence interval corresponding to CL:

“The mean height of BU students is 66.134 +/- 0.6 inches with a confidence of 95.45%.”

or change the confidence level if you wish:

“The mean height of BU students is 66.134 +/- 0.9 inches with a confidence of 99.73%.”



Confidence Intervals When Population Parameters are Known

Caveat:  There is a one-to-one correspondence between confidence levels and k, but 
unfortunately these do not correspond to nice, round numbers on each side. So just be 
aware of whether you want, for example, “two standard deviations” or “95%” (which are 
different).  Also realize that “95.45%” is an approximation of “two standard deviations”:



Sampling When the Population Parameters are Unknown

When the population parameters (mean, standard deviation) are unknown, you have 
no choice but to use the standard deviation of the sample in place of the (unknown) 
standard deviation of the population. 

There are three important cases to consider:

First, you can use the standard deviation of the sample when n > 30 (large samples).

Second, when the population is Bernoulli (yes/no, male/female,1/0, vote for A/vote 
for B), then the standard deviation is derived from the mean of the sample using the 
formulae:

This is called Sampling with Proportions in most textbooks. You can think of it as 
sampling a Bernoulli, and simply use the parameters above in the preceding results with 
the normal distribution, OR you can think of the whole sample as a Binomial, and use the 
Binomial directly.

Then you divide as usual to find 
the std of the sample mean:



Sampling When the Population Parameters are Unknown

When the population parameters (mean, standard deviation) are unknown, you have 
no choice but to use the standard deviation of the sample in place of the (unknown) 
standard deviation of the population. 

There are three important cases to consider:

First, you can use the standard deviation of the sample when n > 30 (large samples).

Second, when sampling proportions, use                           . 

Third, when sampling with n <= 30 from a population known to be Normal, but 
with unknown mean and standard deviation, you can use a slightly different formula for 
the sample standard deviation and a slightly different distribution, called the T-
Distribution.


